Asymptotics of the heat kernel on rank-1 locally symmetric spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heat kernel bounds, Poincaré series, and L spectrum for locally symmetric spaces

We derive upper Gaussian bounds for the heat kernel on complete, non-compact locally symmetric spaces M = Γ\X with non-positive curvature. Our bounds contain the Poincaré series of the discrete group Γ and therefore we also provide upper bounds for this series.

متن کامل

The Minakshisundaram-pleijel Coefficients for the Vector Valued Heat Kernel on Compact Locally Symmetric Spaces of Negattve Curvature

We use harmonic analysis on semisimple Lie groups to determine the Minakshisundaram-Pleijel asymptotic expansion for the trace of the heat kernel on natural vector bundles over compact, locally symmetric spaces of strictly negative curvature. Introduction. Let G be a connected, real semisimple Lie group of rank one with finite center. Let G = K ■ A ■ N be an Iwasawa decomposition of G and let M...

متن کامل

L spectral theory and heat dynamics of locally symmetric spaces

In this paper we first derive several results concerning the L spectrum of arithmetic locally symmetric spaces whose Q-rank equals one. In particular, we show that there is an open subset of C consisting of eigenvalues of the L Laplacian if p < 2 and that corresponding eigenfunctions are given by certain Eisenstein series. On the other hand, if p > 2 there is at most a discrete set of real eige...

متن کامل

On the number of ends of rank one locally symmetric spaces

Let Y be a noncompact rank one locally symmetric space of finite volume. Then Y has a finite number e(Y ) > 0 of topological ends. In this paper, we show that for any n ∈ N, the Y with e(Y ) ≤ n that are arithmetic fall into finitely many commensurability classes. In particular, there is a constant cn such that n-cusped arithmetic orbifolds do not exist in dimension greater than cn. We make thi...

متن کامل

Pseudodifferential Operator Calculus for Generalized Q-rank 1 Locally Symmetric Spaces, I

This paper is the first of two papers constructing a calculus of pseudodifferential operators suitable for doing analysis on Q-rank 1 locally symmetric spaces and Riemannian manifolds generalizing these. This generalization is the interior of a manifold with boundary, where the boundary has the structure of a tower of fibre bundles. The class of operators we consider on such a space includes th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and General

سال: 1999

ISSN: 0305-4470,1361-6447

DOI: 10.1088/0305-4470/32/31/303